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We investigate the capillary filling of three-dimensional microchannels with surfaces patterned by posts of
square cross section. We show that pinning on the edges of the posts suppresses and can halt capillary filling.
We stress the importance of the channel walls in controlling whether filling can occur. In particular for channels
higher than the distance between adjacent posts, filling occurs for contact angles less than a threshold angle of
�55°, independent of the height of the channel.
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I. INTRODUCTION

Capillary filling, the ability of water to fill a hydrophilic
channel, has been recognized since the pioneering work of
Lucas and Washburn �1–3� nearly a century ago. However,
investigations of capillary filling in microchannels remain
interesting due to modern applications of microfluid devices.
Advances in lithographic techniques mean that it is becom-
ing increasingly feasible to fabricate microchannels with
well defined surface structures on micron length scales.
These have potential applications for chemical detection �4�,
as microreactors �5�, or to build entropic traps for DNA sepa-
ration �6�. Our aim in this paper is to present a numerical
investigation of how posts on the surface of a microchannel
affect capillary filling. Our results are relevant to the use of
electrowetting to control flow in microchannels and suggest
ways to overcome the difficulties of filling structured micro-
channels.

If a channel with hydrophilic walls comes into contact
with a fluid reservoir it starts to fill as capillary forces pull
the fluid into the channel. Balancing the capillary forces
�2� cos �ad� against the viscous drag of the entering fluid
�12�x�dx /dt� /H2� gives an expression for the position of the
advancing fluid in the channel x as a function of time t �2�,

x2 =
�H cos �ad

3�
t , �1�

for a capillary of height H and infinite width. � is the gas-
liquid surface tension, � is the fluid viscosity, and �ad is the
contact angle of the advancing front. This formula neglects
inertial and gravitational effects �good approximations once
filling is established and for channels of dimension smaller
than the capillary length�, assumes that the displaced fluid
has zero viscosity, and neglects the slip length. These condi-
tions are not always satisfied by simplified models used to
investigation of capillary filling. However, excellent agree-
ment between the theory and numerical results can be
achieved by accounting for drag forces of the gas
�12�gas�L−x��dx /dt� /H2, where L is the length of the chan-
nel and �gas is the viscosity of the gas� �7� or allowing for a
slip length �8�.

When the surface of a microchannel is patterned with ob-
stacles, such as posts or ridges, the capillary filling is, in
general, suppressed because of pinning on the edges of the
posts. The statics of the pinning can be understood by refer-

ence to Gibbs’ criterion �9�. This states that, when a fluid
interface reaches an edge, it will remain pinned over the
range of angles between the equilibrium contact angles on
each of the surfaces bounding the edge as illustrated in Fig.
1�a�. A striking consequence of Gibbs’ criterion is that if
there are opposing ridges across the channel it does not fill
�10�. Capillary forces pull the interface until it becomes a flat
surface, pinned on the edges as shown in Fig. 1�b�. It cannot
move down the sides of the post from this configuration and
hence will remain pinned. If the meniscus is moving, how-
ever, inertial effects may allow it to overcome the pinning as
it reaches the ridge. Then, as the interface moves down the
channel it slows and will eventually pin at a subsequent
ridge. We also note that for nanoscale roughness thermal
fluctuations allow the interface to depin and advance �11�.

If the ridges across the channel are replaced by separated
posts capillary filling becomes possible for sufficiently low
values of the contact angle. The aims of this paper are to
investigate how the depinning behavior depends on the chan-
nel geometry and the contact angle and to explore the depin-
ning mechanism in some detail. We emphasize the impor-
tance of the channel walls in controlling the depinning of the
interface and we identify the way in which the interface de-
pins for different channel geometries. Estimates are given for
the contact angles at which depinning occurs.

In Sec. II we define the model we use, summarizing the
equilibrium properties and the equations of motion. We then
describe the geometry of the channel and list the simulation
parameters of the model. In Sec. III we present our results.
For two typical channels, using values of �eq which do not
pin, we compare the filling rate to the similar case of a
smooth channel �without obstacles�, showing how posts on
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FIG. 1. �Color online� �a� When a fluid interface reaches an edge
it remains pinned for a range of angles 2�−2�eq−�. �b� A fluid
front, advancing from the left, remains pinned �straight line� at the
edges of two opposing ridges for all contact angles.
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the channel surface slow the filling. We then concentrate on
the filling/pinned transition. The case in which the posts span
the channel and that in which the posts do not meet across
the channel are investigated in Secs. III A and III B, respec-
tively. We find that, for high channels and long posts, the
pinning-depinning threshold angle is �th

� �55°. The depin-
ning is driven by the walls and is independent of the channel
geometry. For narrow channels or short posts, filling is pos-
sible for higher contact angles. In Sec. III C we discuss the
effect of inertia on the determination of the threshold contact
angle �th

� . Finally Sec. IV presents our conclusions.

II. MODEL

As we are considering micron length scales it is appropri-
ate to describe the system using a mesoscale modeling ap-
proach. We choose to use a diffuse interface model, solved
using a lattice Boltzmann algorithm �12–14�, which has
proven to be a useful tool to model the dynamics of fluids
with moving interfaces. Of particular relevance here, Pooley
et al. �15� demonstrated how this approach can be used to
describe capillary filling in smooth microchannels. We now
give details of the model, the channel geometry, and the
simulation parameters used in this paper. Details of the
implementation of the lattice Boltzmann method of solving
the equations can be found in �15� and are not repeated here.

A. Equations of motion

We consider a binary fluid with components A and B, say,
described by the free energy functional,

� = �
	
� c2

3
n ln n +




2
�����2 −

a

2
�2 +

a

4
�4� + �

�	

h�z,

�2�

where n is the local total density of the A and B components
�n=nA+nB�, � is the order parameter �=nA−nB, and c is the
lattice velocity c=�x /�t, where �x is the lattice spacing and
�t is the simulation time step. The first integral in Eq. �2�,
taken over the total volume 	, controls the bulk properties of
the system. The terms in � give coexistence of phases with
�= 1. The energy cost of an interface between the two
phases is modeled by the derivative term, with 
 related to
the surface tension. The term in n controls the compressibil-
ity of the fluid.

The integral over the solid-liquid interface �	 in Eq. �2�
accounts for the wetting properties of the solid surfaces. h is
related to the equilibrium contact angle �eq by �16�

h = 	2
a sgn
�

2
− �eq�	cos
�

3
��1 − cos
�

3
�� ,

� = cos−1�sin2 �eq� , �3�

with sgn�x�=1 if x�0 and sgn�x�=−1 otherwise.
The hydrodynamics of the fluid is described by the

Navier-Stokes equations for the density � and the velocity
field v together with a convection-diffusive equation for the
binary order parameter �,

�t� + � · ��v� = 0, �4�

�t��v�� + ����v�v�� = − ���P�� + ����v� + ��v��� , �5�

�t� + � · ��v� = M�2� . �6�

In Eq. �5� � is the viscosity of the fluid and in Eq. �6� M is
a mobility coefficient. The pressure tensor P�� and the
chemical potential � which appear in Eqs. �5� and �6�, which
describe the equilibrium properties of the fluid, follow from
the free energy �Eq. �2�� as

P�� = ���
��

������
+ �����

��

����
+ n

��

�n
− ��

= 
������ + ���� c2

3
n +

3a

4
�4 −

a

2
�2 −




2
�����2

− 
������� , �7�

� =
��

��
= a�3 − a�2 − 
����� . �8�

We have chosen to use a two-component binary fluid as a
model system to simulate capillary filling. This is because
modeling capillary filling correctly using a liquid-gas diffuse
interface model is computationally demanding because of
unphysical motion of the interface due to evaporation-
condensation effects �7�. However our results are equally
applicable to a physical system where a liquid displaces a
gas as the important physical parameters are the viscosities,
not the densities, of the fluid components. Therefore we shall
use the natural terminology “liquid” and “gas” for the dis-
placing and displaced fluid from now on.

B. Simulation geometry

Figure 2 reports the channel geometry which we use in
this paper. Two reservoirs, of liquid and gas, which are in
contact to equalize the pressure, are connected to a channel,
running along x, with walls decorated by equispaced rectan-
gular posts. The relevant geometric parameters are the chan-
nel height H �measured from wall to wall�, the distance be-
tween the top of two posts on opposing walls Heff, the
distance between two obstacles across the channel L, and the
cross section of the posts which we choose to be square with
side of length D.

C. Simulation parameters

All the quantities reported in this paper are expressed in
units of �x, the lattice spacing, and �t, the time step and
hence c=1. We simulate channels with one, two, or three
rows of posts corresponding to lengths �in the x direction;
see Fig. 2� Lx from 80 to 200 lattice spacing. In the y direc-
tion we employ periodic boundary condition and sizes Ly
from 60 to 170, while H=Lz spans from 30 to 100. For the
reservoirs we use the same Ly,res=Ly while in the z direction
we use periodic boundary conditions with Lz,res two or three
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times Lz. The x length of the reservoir Lx,res is approximately
half the channel length Lx. For the free energy �Eq. �2��, the
bulk phases ��=1 and �=−1� are interpolated by an inter-
face with a profile which is well approximated by �
=tanh�x /	2�� �with �=	k /a� and with a surface tension
equals �=	8ka /9. Here we use a=0.04 and k=0.02. These
values give an interface width of order four lattice Boltz-
mann nodes which is much smaller than the typical size of
the posts used. The viscosity � and the mobility coefficient
M appearing in the hydrodynamic equations �Eqs. �5� and
�6�� are related to the relaxation time in the lattice Boltzmann
algorithm �12�. We use M =0.25. For the gas viscosity �gas
=0.033, while for the liquid �unless specified� �liq=0.83.
Both the gas and liquid densities are set to 1.

III. RESULTS

In a typical simulation we start with a configuration in
which the liquid-gas interface has advanced to the end of the
first row of posts as indicated by the broken line in Fig. 2. If

the contact angle is not too large, the interface moves
through the channel, driven by the capillary force. If the
filling fluid overcomes the first row of obstacles, we have
verified it depins from the second row too. We have also
used starting configurations with empty channels, finding no
differences in the filling or pinned phase diagram.

Figure 3 shows the position of the advancing front �in the
middle and near the walls of the channel� as a function of
time for two typical geometries and for contact angles which
do not pin. It is immediately apparent that the flow profile is
very different to that of a smooth channel Heff=H. Three
regimes are present. When the advancing fluid reaches the
beginning of the obstacles �dotted lines in Fig. 3� it acceler-
ates because of the increase in the capillary force due to
more wettable surface provided by the obstacles. When the
front reaches the end of the obstacles it remains pinned for a
certain time during which it is almost at rest. When finally it
depins it restarts filling the channel with a Lucas-Washburn-
like law �Eq. �1�� but with a reduced velocity �the “deceler-
ated” regime compared to the smooth channel in Fig. 3�. This
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FIG. 2. �Color online� Structure and parameters of the channel. The fluid flows from left to right along the x axis. H is the height of the
channel, Heff is the distance between the tops of the posts, D is the dimension of the square posts, and L is the distance between the posts.
�a� is a cross section in the x-z plane and �b� is a three-dimensional view of the channel geometry.
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FIG. 3. �Color online� Position x of the advancing front for �a� D=20, L=40, Heff=0, H=40, �eq=55° and �b� D=20, L=40, Heff=30,
H=50, �eq=60° as a function of time t. The positions of the advancing front near the wall �full line� and in the middle of the channel �broken
line� are compared. We compare the filling rate for the same channel without posts �Heff=H�.
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happens because the drag force is now larger due to the
presence of the obstacles within the displacing viscous fluid.
We observe that the “accelerated” and decelerated regimes
are more obvious for Heff=0 because the post surface is big-
ger than for Heff=30.

For the parameters considered in Fig. 3 the front is finally
able to depin from each of the obstacles to move down the
channel, but for lower contact angles it remains pinned. We
next look in more detail at the pathways for depinning.

A. Heff=0

We first consider geometries in which the posts span the
channel �Heff=0 in Fig. 2�. Figure 4 summarizes results
which distinguish the cases where the interface is pinned on
the posts from those where it can advance along the channel
for a range of geometric parameters �H, L, and D, defined in
Fig. 2� and equilibrium contact angles �eq.

At high �eq the front remains pinned. However, at lower
�eq the meniscus can overcome Gibb’s pinning and the chan-
nel fills. This is due to the presence of walls bounding the
channel. By advancing along the walls the meniscus is able
to reach the angle it needs to move across the face of the
posts. This is illustrated in Fig. 5 for different aspect ratios of
the channel.

Two different regimes are apparent in Fig. 4. For H /L
�1 the boundary between contact angles that allow filling
and those that do not is independent of H /L occurring at an
angle, which we shall denote �th

� , �55°. For H /L�1, how-
ever, the transition angle is not constant but increases with
decreasing H /L.

Figure 5 compares the way in which the front depins from
the posts in each of the two regimes. For H /L�1 �Fig. 5,
column �a�� the walls act independently. The menisci from
two neighboring gaps first meet at the walls and then the
advancing front covers the posts, moving from the walls to-
ward the center of the channel. Hence the contact angle be-
low which depinning proceeds, �th

� , is independent of H /L.
Further evidence is provided for this by Fig. 6 which

shows how the meniscus advances along the wall for differ-

ent values of H and at fixed L. The profiles are nearly inde-
pendent of H as long as the front remains pinned. Without
obstacles, the Lucas-Washburn law predicts a velocity pro-
portional to H �Eq. �1��, so that the profiles in Fig. 6 would
be well separated in a smooth channel.

We stress the importance of the walls even in the limit
H→�. Even for a very high channel depinning will occur at
�th

� and will proceed as in Fig. 5, column �a� �except that it
will take more time to wet the posts�. However, without any
walls the advancing fronts will remain pinned at the ob-
stacles and flat as in Fig. 1�b�.

For H /L�1, however, depinning occurs for contact
angles greater than �th

� . This is because the walls are suffi-
ciently close that the interface moves in a concerted way
across the channel. Therefore, once the menisci have ad-
vanced along the surfaces sufficiently far for depinning to
occur, the interface depins along all of a post at the same
time, and the posts are wet from the sides. As H /L decreases
the two surfaces more easily deform the interface and hence
depinning can take place at a higher contact angle. This
agrees with analytic results showing that, in the H /L→0
limit, the interface depins for all hydrophilic contact angles
�17� and can be understood using a free energy argument.
The free energy gain in deforming the advancing interface
scales like the area of the gas-liquid interfaces and goes to
zero as H for H→0. However the loss in free energy due to
the wetting of the walls remains constant for H→0. As a
consequence the interface will advance for any �eq�90° for
sufficiently small H.

We expect the phase diagram to depend only on H /L and
to be independent of D as, once the front has started to depin,
the interface will continue moving across the post until it
covers it. Indeed, using L=40 we repeated simulations for
D=30 �H=60,80� and D=40 �H=60,80� finding, again, a
depinning transition compatible with �th

� . On the other hand
we observed a weak dependence of �th

� on L. We repeated
simulations for L=30, D=30, and H /L=20, 30, 50, 80, 100,
and 120. �th

� was again independent of H /L for H /L�1, but
placed between 50° and 55°, while for L=40 �Fig. 5� �eq
=55° fills the channel. In Sec. III C we show that the depen-
dence of �th

� on L is related to inertial effects.

B. Heff�0

In this section we describe the behavior for the more gen-
eral case Heff�0 when the posts do not reach all the way
across the channel. We will consider the H /L�1 geometry
where the interface depins from posts with Heff=0 by a tran-
sition at �th

� , driven by depinning initiated at the walls. For
Heff�0 filling the channel should be easier.

Figure 7 shows pinned configurations of the meniscus
near the channel wall for different values of Heff, keeping the
other geometric parameters fixed, and for �eq=60°. For Heff
=0 this corresponds to a pinned configuration. The effect of
increasing Heff is to increase the contact angle at the edge of
the post. When this angle exceeds the equilibrium contact
angle ��eq=60° in Fig. 7� then, as predicted by Gibbs’ crite-
rion, the front depins. For the parameters of Fig. 7 this hap-
pens for Heff=40 �not reported in the figure�.
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FIG. 4. �Color online� Filling/pinning transition for the Heff=0
geometry �posts that span the channel; see Fig. 2�. Open symbols
are simulations in which the front is pinned while full symbols
correspond to simulations in which the channel is filled. For H /L
�1 the filling-pinning transition happens for a threshold angle of
�55°, while for H /L�1 the transition is possible for a range of
equilibrium contact angles which increases with decreasing H /L.
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For Heff�H /2, the angle the meniscus makes with the
edge of the post does not change significantly. For this rea-
son, at low values of Heff the threshold equilibrium contact
angle is almost the same as in the Heff=0 case �i.e., ��th

��.
However the meniscus advances significantly from its posi-
tion at Heff=0 when Heff becomes comparable to H. This can
be explained by considering the shape of the pinned inter-

face. If Heff=0 and H /L�1, the pinned front is almost flat in
the middle of the channel with significant deviations only
near the walls. If Heff is small enough that the gap does not
overlap with the wall regions, then it will not perturb the
interface compared to the Heff=0 configuration. On the other
hand for large Heff, the end of the posts will lie within the
wall region and there will be significant deformation of the
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FIG. 5. �Color online� Depinning path ways for Heff=0: �a� H /L�1 �D=20, L=40, H=80, �eq=50°� and �b� H /L�1 �D=20, L=150,
H=50, �eq=70°�. The first three rows are three-dimensional views of the advancing front �aspect ratios not to scale� and the fourth row
shows the position of the advancing front on the face of the posts as a function of time during depinning. Note that for H /L�1 �a� the fluid
wets the posts from the walls of the channel, whereas for H /L�1 �b� the fluid advances from the sides of posts.
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pinned front, compared to the Heff=0 case, and a threshold
equilibrium contact angle different to �th

� .
For several channels �D=20, L=40, H=40, 50, 60, 70,

and 80� we have verified that at low Heff the front remains
pinned at �eq=60° ��th

� , as in the Heff=0 case, while at high
enough Heff, �eq=60° can fill the channel. We were never
able to observe filling for �eq=65°, but we do not exclude
that at high enough Heff �which would require a larger simu-
lation box to properly resolve the small height of the posts�
this can happen.

Results summarizing the threshold in Heff above which
�eq=60° fills are reported in Fig. 8. Having fixed D and L,
we use Heff /H and H /L as control parameters. At low value
of H /L the filling for �eq=60° occurs for values of Heff /H
greater than 0.5 �see full circles�. Increasing H /L higher val-
ues of Heff /H are needed to achieve filling at 60° because the
length of flat interface in the middle of the channel increases
with increasing H.

At small values of Heff �for which �eq=60° does not fill�
the depinning route is the same as for Heff=0. This is shown
in the first column of Fig. 9. As the meniscus advances near
the walls of the channel the interface between the posts re-
mains almost completely flat. The posts are wet, as before,
from the channel walls toward the center. This is not the case

for larger value of Heff �full symbols in Fig. 8�. In Fig. 9,
column �b�, the advancing front does not remain pinned in
the middle of the channel but the posts are wet from their
ends and sides toward the walls.

C. Inertial effects

In performing the simulations we found that inertial ef-
fects made it difficult to determine the exact contact angle at
which depinning occurs. If the front reaches the free energy
minimum which corresponds to pinning with a residual ki-
netic energy it can overshoot and hence depin, and it is not
possible to entirely eliminate this effect without prohibitively
long simulations. Indeed in a physical system the front will
approach the posts with a finite velocity and whether it will
pin will be a balance between �eq and the extent to which the
front has been slowed by the viscous drag in the channel.

To demonstrate the effects of inertia close to the depin-
ning transition we investigated filling a channel with D=20,
L=40, H=60, Heff=0, and �eq=55°, from the starting con-
figuration shown in Fig. 2, for three different liquid viscosi-
ties. Figure 10 shows the position of the advancing front as a
function of time for each case. At early times lower viscosi-
ties give slightly higher speeds. However, the higher viscos-
ity fluids gain more energy from the walls and have sufficient
inertia to move fast the pinning position for this contact
angle whereas, at least on the time scale of the simulation,
the lowest viscosity fluid remains pinned. As anticipated in
Sec. III A, inertial effects are also responsible for the depen-
dence of �th

� on L, which controls the amount of water ad-
vancing between two posts �or equivalently the scale of the
system�.

We tried to better determine the position of �th
� repeating

simulations in which �eq was gradually decreased �by 0.5°
each 105 time steps� to better reproduce a quasistatic relax-
ation of the interface. For a channel with L=30 we obtained
�th

� =52.5° 0.5°. However this estimate is very difficult be-
cause of the flatness of the free energy profile and the very
slow interface velocities.

We stress that, for angles near depinning, inertial effects
depend primarily on the way in which the interface is pulled
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FIG. 6. �Color online� Position of the depinning front near the
walls �at z=2� as a function of time �for t=1, 2 and 3�104 lattice
Boltzmann time steps� for �eq=50° and several H so that H /L�1
with L=40.
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correspond to interfaces that remain pinned at �eq=60° as in the
case Heff=0.
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beyond the end of the posts by the surface but not on its
initial position within the microchannel. Hence we expect
that this is not just an artifact of the simulations, but that
similar inertial effects will occur in experimental systems.

IV. DISCUSSION

As microfabrication techniques become standard it is be-
coming possible to design microchannels with complicated
internal geometries that may prove useful in controlling fluid
behavior. As a step toward understanding how fluids move in
such channels we have investigated capillary filling in micro-
channels patterned by regularly spaced square posts. A con-

sequence of Gibbs’ criterion is that ridges that face each
other across a channel will always pin a slowly moving in-
terface. We show that, if the ridges are replaced by posts, the
interface is able to depin for sufficiently small contact
angles. This is because the meniscus can advance along the
surfaces of the channel between the posts, thus allowing de-
pinning to occur.

For posts which span the channel and for a ratio of chan-
nel height to distance between the posts H /L�1 the depin-
ning threshold �th

� is independent of H /L because the two
surfaces of the channel act independently. �th

� lies between
55° and 60° and the posts are wet from the surfaces toward
the center of the channel. For H /L�1 the threshold contact
angle increases with decreasing H /L as the surfaces act co-
operatively to reduce interface curvature across the channel.
Here the posts primarily wet from their sides to their centers.

In the general case in which the posts on opposing sides
of the channel are separated by a distance Heff two regimes
are present for H /L�1. At low Heff the filling/pinned tran-
sition is similar to that for Heff=0, with a threshold value of
the equilibrium contact angle around �th

� and posts which wet
from the wall to the center of the channel. For high enough
Heff, however, the threshold equilibrium contact angle for
depinning increases, and the posts can also wet from the
center of the channel toward the walls during depinning.
These results are in agreement with �10�, where channels
with fixed H and Heff and several L were considered. In
particular in the range H /L�1, a contact angle threshold
compatible with �th

� was observed. On increasing the value of
L �i.e., exploring the H /L�1 regime�, filling at higher �eq
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FIG. 9. �Color online� Depinning mechanism for �a� H=80, Heff=30, L=40, and �eq=55° and �b� H=60, Heff=40, L=40, and �eq

=60°. In the first row we report three-dimensional interface profiles during depinning, while in the second row the position of the advancing
front along a section taken through the center of a post at different times. In �b� the face of the post is wet both from its ends and sides.
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FIG. 10. �Color online� Position of the maximum of the advanc-
ing front near the wall �z=2� as a function of time for D=20, L
=40, �eq=55°, and three different values of the viscosity �.
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was found, in agreement with our Heff=0 results.
We have concentrated mainly on the quasistatic situation

where inertia is neglected and therefore our threshold values
are relevant to a very slowly moving interface. We have,
however, shown that close to the threshold even tiny inter-
face velocities can aid depinning. It will now be interesting
to investigate the more general case of a moving interface
and assess the extent to which dissipation at the posts can
slow and eventually pin the interface for a range of contact
angles.

The contact angle of a fluid within a microchannel can
rather easily be varied by applying an electrowetting poten-

tial. This opens the possibility of controlling the fluid motion
by switching �eq in and out of the pinning regime �18�. This
is of particular interest in the large H /L regime because the
threshold equilibrium contact angle is well approximated by
�th

� , independent of the channel geometry.
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